3.24. Табаны AC болатын ABC тең бүйірлі үшбұрышының биссектрисасы AD. Егер 20 = 50° болса, онда ADC-ны табыңдар.​

мугамбе мугамбе    1   19.01.2021 12:52    20

Ответы
Кира4311 Кира4311  28.01.2024 14:43
Хорошо, давайте разберемся с этим вопросом.

У нас есть треугольник ABC, в котором AC является равным боковым стороной, а AD - биссектрисой угла А. Изначально нам дано, что угол ADC равен 50°.

Первым шагом мы можем заметить, что биссектриса делит угол ADC на два равных угла. Таким образом, уголы ADB и BDC равны между собой и составляют по 25°, так как 50° / 2 = 25°.

Затем мы можем заметить, что угол ADC и сторона AD имеют общую сторону AD. Это означает, что у нас есть два равных боковых угла (ADB и BDC), поэтому сторона AD также должна быть равна, так как боковые стороны треугольника при противостоянии равным углам равны.

Теперь у нас есть три равных стороны треугольника (AC, AD и AD), что делает треугольник равносторонним. В равностороннем треугольнике все углы равны по 60°.

Таким образом, ответ на вопрос состоит в том, что уголы ADC, ADB и BDC равны 50°, 25° и 25°, соответственно.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия