приведем оба уравнения системы к виду y=kx+b(уравнение прямой).
Если две прямые и заданы уравнениями и , то на плоскости они могут быть:
1) и - прямые параллельны, следовательно они не пересекаются и, следовательно, система из таких прямых не имеет решений.
2) и - прямые совпадают, следовательно, система из таких прямых будет иметь бесконечное множество решений.
3) - прямые пересекаются в одной точке, следовательно, система из таких прямых будет иметь только одно решение.
Применим это для решения данной задачи:
Значит, при a=0 данная система не имеет решений.
Значит, при a=3 данная система имеет бесконечное множество решений.
При остальных значениях a система будет иметь только одно решение:
В итоге:
система имеет одно решение.
ответ: a=0 => система не имеет решений(x∈∅)
a=3 => система имеет бесконечное множество решений(x∈R)
a∈(-∞;0)∪(0;3)∪(3;+∞) => система имеет одно решение.
приведем оба уравнения системы к виду y=kx+b(уравнение прямой).
Если две прямые и заданы уравнениями и , то на плоскости они могут быть:
1) и - прямые параллельны, следовательно они не пересекаются и, следовательно, система из таких прямых не имеет решений.
2) и - прямые совпадают, следовательно, система из таких прямых будет иметь бесконечное множество решений.
3) - прямые пересекаются в одной точке, следовательно, система из таких прямых будет иметь только одно решение.
Применим это для решения данной задачи:
Значит, при a=0 данная система не имеет решений.
Значит, при a=3 данная система имеет бесконечное множество решений.
При остальных значениях a система будет иметь только одно решение:
В итоге:
система имеет одно решение.
ответ: a=0 => система не имеет решений(x∈∅)
a=3 => система имеет бесконечное множество решений(x∈R)
a∈(-∞;0)∪(0;3)∪(3;+∞) => система имеет одно решение.