Найдите сумму всех значений k , при каждом из которых корни уравнения 7x^{2} +(5k^{2} -6k-11)x-k^{4}=0 являются противоположными числами. а)1,4 б)1,2 в)1,6 г)1,8 p.s напишите с объяснением, если можно)
Объяснение: квадратичная функция, график-парабола, ветви вверх... условие существования двух различных корней: D>0
(для этой функции дискриминант всегда положителен: (5k^2-6k-11)^2+28k^4>0 для любых k...)
корни будут противоположными числами (т.е. равными по модулю и отличающимися только знаком: 5 и -5; или 1.5 и -1.5), если вершина параболы лежит на оси ОУ, т.е. имеет координаты (0; у) и у<0
при х=0, получим у = -k^4 <0
абсцисса вершины вычисляется по формуле:
-b/(2a) = -(5k^2-6k-11)/14 = 0
5k^2-6k-11=0
D=36+220=16^2
k=(6-16)/10=-1 или k=(6+16)/10=2.6
при этих значениях k вершина будет лежать на оси ОУ
ответ: в)
Объяснение: квадратичная функция, график-парабола, ветви вверх... условие существования двух различных корней: D>0
(для этой функции дискриминант всегда положителен: (5k^2-6k-11)^2+28k^4>0 для любых k...)
корни будут противоположными числами (т.е. равными по модулю и отличающимися только знаком: 5 и -5; или 1.5 и -1.5), если вершина параболы лежит на оси ОУ, т.е. имеет координаты (0; у) и у<0
при х=0, получим у = -k^4 <0
абсцисса вершины вычисляется по формуле:
-b/(2a) = -(5k^2-6k-11)/14 = 0
5k^2-6k-11=0
D=36+220=16^2
k=(6-16)/10=-1 или k=(6+16)/10=2.6
при этих значениях k вершина будет лежать на оси ОУ
2.6-1=1.6