Спростити (sina-cosa)^2-1+sin4a/cos2a+cos4a

regional368 regional368    3   27.03.2019 23:50    0

Ответы
GNRK GNRK  26.05.2020 19:38
Для удобства написания заменила угол а на угол х

\frac{(sinx-cosx)^2-1+sin4x}{cos2x+cos4x} = \frac{sin^2x-2sinx*cosx+cos^2x-1+sin4x}{cos2x+cos4x}=\\=\frac{-2sinx*cosx+sin4x}{cos2x+(2cos^2x-1)}= \frac{sin4x-sin2x}{(cos2x+1)(2cos2x-1)}=\\=\frac{2sin2x*cos2x-sin2x}{(cos2x+1)(2cos2x-1)}= \frac{sin2x(2cos2x-1)}{(cos2x+1)(2cos2x-1)}= \frac{sin2x}{cos2x+1}=\\=\frac{2sinx*cosx}{cos^2-sin^2x+cos^2x+sin^2x}= \frac{2sinx*cosx}{2cos^2x}= \frac{sinx}{cosx}=tgx

пояснения:
\Large cos2x+2cos^22x-1\\cos2x=t\\2t^2+t-1=0\\t_1=-1; t_2=1/2\\2cos^2x+cos2x-1=(cos2x+1)(2cos2x-1)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика