1. Если производные уже изучались, то можно поступить так. В точке экстремума (а он единственный у квадратного трехчлена), производная обращается в ноль. Поэтому достаточно найти производную, приравнять её к нулю и решить полученное уравнение, определив значение аргумента х, при котором достигается экстремум. А затем подставить это значение в заданную функцию и решить полученное уравнение относительно а.
Получаем, что а=-2
2. Можно обойтись и без производных, рассматривая поведение графика заданной функции. Выделим полный квадрат.
Коэффициент при х² отрицательный, следовательно, квадратная парабола направлена ветвями вниз. Выражение (x-1)² говорит о том, что ось симметрии параболы будет сдвинута влево на +1 от оси Y, следовательно, при х=1 достигается максимум. А далее решение проводится, как показано выше для известного х=1.
В точке экстремума (а он единственный у квадратного трехчлена), производная обращается в ноль. Поэтому достаточно найти производную, приравнять её к нулю и решить полученное уравнение, определив значение аргумента х, при котором достигается экстремум. А затем подставить это значение в заданную функцию и решить полученное уравнение относительно а.
Получаем, что а=-2
2. Можно обойтись и без производных, рассматривая поведение графика заданной функции.
Выделим полный квадрат.
Коэффициент при х² отрицательный, следовательно, квадратная парабола направлена ветвями вниз. Выражение (x-1)² говорит о том, что ось симметрии параболы будет сдвинута влево на +1 от оси Y, следовательно, при х=1 достигается максимум. А далее решение проводится, как показано выше для известного х=1.