Втреугольнике abc ab=8*v2, ac=18, угол а=45 градусам. найдите медиану, проведенную из вершины а v-корень

Dima22022005 Dima22022005    1   28.05.2019 06:40    5

Ответы
Сашуля12345 Сашуля12345  25.06.2020 16:57
В треугольнике ABC AB=8*V2, AC=18, угол А=45 градусам. Найдите медиану, проведенную из вершины А

По теореме косинусов находим квадрат третей стороны треугольника:
ВС² = АВ²+АС²-2*АВ*АС*Cos45° = 128+324-2*8√2*18*0,707 =164.
Продолжаем медиану за точку пересечения с третей стороной и откладываем на продолжении отрезок, равный медиане. Имеем параллелограмм ( по признаку параллелограмма: если диагонали четырехугольника делятся в точке их пересечения пополам, то этот четырехугольник - параллелограмм). По свойству параллелограмма: "Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон" находим вторую диагональ (первая это ВС):
164+X² =2*(128+324), отсюда Х = √740 ≈ 27,2 Это две медианы, значит медиана равна 13,6.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия