Впрямоугольную трапецию вписана окружность. точки соприкосновения делит большую боковую сторону на отрезки 4 см и 25 см. найти площадь трапеции

Лиззка1904 Лиззка1904    3   06.07.2019 14:50    0

Ответы
Papyas3 Papyas3  02.10.2020 21:18
По свойству отрезков касательных к окружности ,проходящих через одну точку,имеем,что углы,которые они образуют с прямой,проходящей через эту точку и центр окружности равны.
Соединим центр окружности с вершинами тупого и острого углов.
Получаем прямоугольный треугольник с прямым углом в центре окружности,поскольку сумма углов,прилежащих к боковой стороне,равна 180(острые углы треугольники - углы при биссектрисах острого и тупого углов трапеции).
h треуг=r.(через Т.Пифагора доказывается среднее геом.проекций катетов на гип.)
r=V(25*4)=10.
В трапеции 2r=h,а в прямоуг.трап. ещё и h=меньшая боковая 
Следовательно,боковая 2*10=20.
Значит,суммы противоположных 29+20=49.
Окружность касается боковой стороны в серединах,
значит,части 10 и 10.
По св-ву отрезков касательных,получаем,меньшая - 14,
большая - 35
S=(35+14)\2*20=490
ответ:490
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия