Впирамиде dabc ребро ad перпендикулярно основанию, ad=4 корня из 3, ab=2, угол abc - прямой, угол bac=60 градусов, m-середина отрезка da. найдите: 1) площадь боковой площади поверхности пирамиды 2) площадь сечения пирамиды плоскостью bmc 3) угол между плоскостями mbc и abc 4) угол, между прямой bc и плоскостью adc докажите, что плоскость mdc перпендикулярна плоскости abd

on82 on82    3   30.06.2019 12:40    5

Ответы
bratan9 bratan9  24.07.2020 06:57
Рассмотрим прямоугольный треугольник ABC.
АВ=2, АС=4 (так как АВ - катет против угла 30°.
ВС=√(АС²-АВ²)=√(16-4)=2√3.
В прямоугольном треугольнике ADB
DB=√(АD²+АВ²)=√(48+4)=√52=2√13.
BM=√(АM²+АВ²)=√(12+4)=√16=4.
<DBC=90° по теореме о трех перпендикулярах, так как
АВ(проекция DB)  перпендикулярна ВС.
1) Sб=Sadc+Sadb+Sbdc  =>
Sб=(1/2)(AD*AC+AD*AB+DB*BC)=(1/2)(16√+8√3+4√39).
ответ: Sб=24√3+4√39.
2) Сечение ВМС прямоугольный треугольник, так как <MBC=90°,
так как плоскость АDB перпендикулярна плоскости АВС.
Sbmc=(1/2)*MB*BC=(1/2)*4*2√3=4√3.
ответ: Sbmc=4√3.
3) Определение: "Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его
ребру (то есть перпендикулярной к обеим плоскостям)".
В нашем случае угол между плоскостями МВС и АВС измеряется
углом МВС по определению.
Sin(MBC)=AM/BM (отношение противолежащего катета к гипотенузе).
Sin(MBC)=2√3/4=√3/2. <MBC=arcsin(√3/2) = 60°.
ответ: <MBC=60°.
4) Определение: "Углом между плоскостью и не перпендикулярной
ей прямой называется угол между этой прямой и ее проекцией на данную плоскость". Угол между прямой BC и плоскостью ADC - это
угол ВСА, так как плоскости ADC и ABC перпендикулярны и проекция
прямой ВС лежит на прямой АС.
<BCA=30° (сумма острых углов прямоугольного треугольника АВС
равна 90°, а <BAC=60° - дано).
ответ: <BCA =30° .
5) Плоскость АDB и плоскость ADC перпендикулярны плоскости АВС, так как прямая AD, лежащая в этих плоскостях, перпендикулярна плоскости АBС (дано). Плоскость MDC (ADC) перпендикулярна
плоскости ABС, но НЕ ПЕРПЕНДИКУЛЯРНА плоскости AВD.
Плоскости МDC(ADC) и ABD образуют двугранный угол, измеряемый линейным углом ВАС (так как плоскость АВС перпендикулярна к обеим плоскостям), который равен 60° (дано).

Впирамиде dabc ребро ad перпендикулярно основанию, ad=4 корня из 3, ab=2, угол abc - прямой, угол ba
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия

Популярные вопросы