Сторона AB, равная 8, правильного треугольника ABC лежит в плоскости альфа, а длины проекций двух других его сторон на эту плоскость равны 2√7. Найдите: а) длину проекций медианы CK данного треугольника на плоскость альфа; б) расстояние от точки C до плоскости альфа
а) 2√3 б) 6.
Объяснение:
Условие задачи.
Сторона AB, равная 8, правильного треугольника ABC лежит в плоскости альфа, а длины проекций двух других его сторон на эту плоскость равны 2√7. Найдите: а) длину проекций медианы CK данного треугольника на плоскость альфа; б) расстояние от точки C до плоскости альфа
Решение.
1) Так как ΔАВС - правильный, то АВ = ВС = АС = 8.
2) В правильном треугольнике АВС его медиана СК является высотой, соответственно и в проекции АВС₁ треугольника АВС на плоскость α проекция С₁K медианы СК является и медианой, и высотой равнобедренного ΔАВС₁ со сторонами: АВ = 8, ВС₁ = АС₁ = 2√7.
3) В прямоугольном ΔАКС₁ сторона АС₁ является гипотенузой, а стороны АК и КС₁ являются катетами, при этом АК = АВ/2 = 8/2 = 4.
По теореме Пифагора находим длину проекции медианы:
С₁K = √ ((АС₁)²-(АК)²) = √ ((2√7)²-(4)²) = √ (4*7 - 16) = √12 = 2√3
Таким образом, длина проекции медианы CK данного треугольника на плоскость α = 2√3
4) В прямоугольном ΔАСС₁, образованном стороной АС треугольника АВС, её проекцией АС₁ на плоскость α, а также перпендикуляром СС₁, опущенным из точки С на плоскость α и являющимся кратчайшим расстоянием от точки С до плоскости α, сторона АС является гипотенузой треугольника АСС₁, а стороны АС₁ и СС₁ - его катетами. ПО теореме Пифагора находим СС₁:
СС₁ = √ ((АС)²-(АС₁)²) = √ ((8)²-(2√7)²) = √ (64 - 4*7) = √36 = 6.
Таким образом, расстояние от точки C до плоскости альфа равно 6.
ответ: а) длина проекции медианы CK данного треугольника на плоскость альфа равна 2√3; б) расстояние от точки C до плоскости альфа равно 6.