На оси координат найдите точку, равноудалённую от точек: а) а (-3; 5) и в (6; 4) б) с (4; -3) и d (8; 1)

DrozZzD DrozZzD    3   16.03.2019 18:50    1

Ответы
Bert18 Bert18  07.06.2020 02:20

Точка, лежащая на оси координат, имеет хотя бы одну нулевую координату. Расстояние между двумя точками определяется по формуле

D = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

----------------------------------------------------------------

а) А (-3;5) и В (6;4)  Нужно найти точку с координатами  (x; y), равноудаленную от точек А и В

D = \sqrt{(x_A-x)^2+(y_A-y)^2}=\sqrt{(x_B-x)^2+(y_B-y)^2}

(x_A-x)^2+(y_A-y)^2=(x_B-x)^2+(y_B-y)^2

(-3 - x)² + (5 - y)² = (6 - x)² + (4 - y)²

9 + 6x + x² + 25 - 10y + y² = 36 - 12x + x² + 16 - 8y + y²

6x - 10y + 34 = -12x - 8y + 52

18x = 2y + 18;         9x = y + 9

x₁ = 0;   9·0 = y₁ + 9;    ⇒   y₁ = -9

y₂ = 0;   9x₂ = 0 + 9;    ⇒   x₂ = 1

ответ:  две точки с координатами  M(0; -9)  и  N(1; 0)

----------------------------------------------------------------

б) С (4;-3) и D (8;1)  Нужно найти точку с координатами  (x; y), равноудаленную от точек C и D

D = \sqrt{(x_C-x)^2+(y_C-y)^2}=\sqrt{(x_D-x)^2+(y_D-y)^2}

(x_C-x)^2+(y_C-y)^2=(x_D-x)^2+(y_D-y)^2

(4 - x)² + (-3 - y)² = (8 - x)² + (1 - y)²

16 - 8x + x² + 9 + 6y + y² = 64 - 16x + x² + 1 - 2y + y²

-8x + 6y + 25 = -16x - 2y + 65

8x = -8y + 40;         x = -y + 5

x₁ = 0;   0 = -y₁ + 5;    ⇒   y₁ = 5

y₂ = 0;   x₂ = 0 + 5;    ⇒   x₂ = 5

ответ:  две точки с координатами  F(0; 5)  и  K(5; 0)


На оси координат найдите точку, равноудалённую от точек: а) а (-3; 5) и в (6; 4) б) с (4; -3) и d (8
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия