Дана правильная четырехугольная пирамида со стороной основания 2 sqrt(6). боковое ребро пирамиды наклонено к плоскости основания под углом 60 градусов. найдите объем вписанного в пирамиду конуса.
Проекция бокового ребра на основание - это половина диагонали квадрата в основании. То есть она имеет длину 2*sqrt(6)*sqrt(2)/2 = 2*sqrt(3); Поэтому высота пирамиды равна 2*sqrt(3)*tg(60) = 6; Радиус вписанной в квадрат окружности sqrt(6), площадь основания конуса 6*пи, объем (1/3)*6*пи*6 = 12*пи
Проекция бокового ребра на основание - это половина диагонали квадрата в основании. То есть она имеет длину 2*sqrt(6)*sqrt(2)/2 = 2*sqrt(3); Поэтому высота пирамиды равна 2*sqrt(3)*tg(60) = 6; Радиус вписанной в квадрат окружности sqrt(6), площадь основания конуса 6*пи, объем (1/3)*6*пи*6 = 12*пи