Буду ! через параллельные прямые a и b проведены 2 плоскости,пересекающиеся по прямой c. доказать что прямые a и b параллельны прямой с.

gagarinov51 gagarinov51    3   16.06.2019 22:20    12

Ответы
mineroma50Romaaa mineroma50Romaaa  13.07.2020 18:16
Свойства параллельных прямых 

Теорема 

Две прямые, параллельные третьей, параллельны. 

Доказательство. 

Пусть прямые a и b параллельны прямой с. Допустим, что прямые a и b не параллельны. Тогда они пересекаются в некоторой точке С. Получается, что через точку С проходит две прямые параллельные прямой с. Но это противоречит аксиоме «Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной» . Теорема доказана. 

Теорема 

Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны. 

Доказательство. 

Пусть есть параллельные прямые a и b, которые пересекаются секущей прямой с. Прямая с пересекает прямую а в точке A и прямую b в точке B. Проведем чрез точку A прямую a1 так, что бы прямые a1 и b с секущей с образовали равные внутренние накрест лежащие углы. По признаку параллельности прямых прямые a1 и b параллельны. А так как через точку A можно провести только одну прямую параллельную b, то a и a1 совпадают. 
Значит, внутренние накрест лежащие углы, образованные прямой a и b, равны. Теорема доказана. 

На основании теоремы доказывается: 

Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны. 

Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180 º
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия