1. одна из сторон параллелограмма на 7 см меньше другой, а его периметр равен 54 см. найдите стороны параллелограмма. 2. в прямоугольнике abcd диагонали пересекаются в точке о, вс = 16 см, ас = 24 см. найдите периметр треугольника аod. 3. сторона ромба образует с одной из его диагоналей угол 18°. найдите углы ромба. 4. на диагонали ас параллелограмма abcd отметили точки е и f так, что аe = сf (точка е лежит между точками а и f). докажите, что ве = df.

andreybalashov andreybalashov    2   29.09.2019 19:20    1

Ответы
dianaandmasha dianaandmasha  09.10.2020 03:33

 1.

В параллелограмме противоположные стороны равны.

Пусть меньшая сторона равна x, тогда противоположная равна x, а смежные с ней равны x+7см. Периметр 54см, поэтому

2·(x + x+7см) = 54см = 4x+14см

4x = 54-14 = 40см

x = 40:4 = 10см - длина каждой из двух меньших сторон.

x+7см = 10+7 = 17см - длина двух других сторон.

ответ: 10см, 17см, 10см и 17см.

 2.

В прямоугольнике противоположные стороны равны (BC=AD), диагонали тоже равны (AC=DB), а точкой пересечения делятся пополам.

AO = AC:2 = 24:2 = 12см

DO = DB:2 = AC:2 = 12см

AD = BC = 16см

\displaystyle P_{AOD} = AO+DO+AD = 12+12+16 = 40см

ответ: 40см.

 3.

Противоположны углы в ромбе равны, смежные углы дают в сумме 180°, а диагонали служат биссектрисами углов.

Сторона образует с диагональю угол в 18°, это же диагональ проходит через углы в 18°·2=36° т.к. она делит их пополам.

Остальные два углы равны между собой и вместе с углом в 36° дают 180°. То есть они равны 180°-36° = 144°.

ответ: 144°, 36°, 144° и 36°.

 4.

ΔAEB = ΔCFD по двум сторонам и углу между ними (AB=CD как противоположные стороны параллелограмма; ∠BAE=∠DCF как накрест лежащие; AE=CF по условию).

BE = DF, как стороны лежащие напротив равных углов (∠BAE=∠DCF), в равных треугольниках. Доказано.


1. одна из сторон параллелограмма на 7 см меньше другой, а его периметр равен 54 см. найдите стороны
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия