Около любого треугольника можно описать окружность.
Доказательство:
Рассмотрим произвольный треугольник ABC. Пусть точка О - пересечение серединных перпендикуляров к его сторонам. Проведём отрезки OA, OB и OC. Они равны (OA=OB=OC), так как точка О равноудалена от вершин треугольника ABC (см. свойство серединных перпендикуляров). Поэтому окружность с центром О радиуса ОА проходит через все три вершины треугольника ABC. Следовательно, окружность описана около треугольника. ABC.
Теорема:
Около любого треугольника можно описать окружность.
Доказательство:
Рассмотрим произвольный треугольник ABC. Пусть точка О - пересечение серединных перпендикуляров к его сторонам. Проведём отрезки OA, OB и OC. Они равны (OA=OB=OC), так как точка О равноудалена от вершин треугольника ABC (см. свойство серединных перпендикуляров). Поэтому окружность с центром О радиуса ОА проходит через все три вершины треугольника ABC. Следовательно, окружность описана около треугольника. ABC.