Решить уравнение:
2sin2x+3cosx=0​

Гомункулис Гомункулис    1   27.12.2019 20:37    1

Ответы
konfetkamailrup0acjk konfetkamailrup0acjk  27.08.2020 19:01

x = (- 1)ⁿ⁺¹arcsin(3/4) + πn,   n∈Z

x = π/2 + πk,   k∈Z

Объяснение:

2sin2x + 3cosx = 0

Воспользуемся формулой: sin2x = 2sinx·cosx.

4sinx·cosx + 3cosx = 0

cosx(4sinx + 3) = 0

4sinx + 3 = 0                         или               cosx = 0

sinx = -3/4                                                   x = π/2 + πk,   k∈Z

x = (- 1)ⁿarcsin(- 3/4) + πn,    n∈Z

x = (- 1)ⁿ⁺¹arcsin(3/4) + πn,   n∈Z

ПОКАЗАТЬ ОТВЕТЫ

x = + - 2 п/3 + 2 пk, k принадлежит z.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра