Найти наименьшие значение функции с производной y=(2x-23)^2*(4-x)+5 на промежутке [ 0; 14)

overlordcfg overlordcfg    3   29.03.2019 08:20    1

Ответы
rusyabarnakov rusyabarnakov  27.05.2020 10:50

Находим производную:

y=(2x-23)^{2}(4-x)+5\\ y'= ((2x-23)^{2})'(4-x)+(2x-23)^{2}(4-x)'=\\=2 \cdot (2x-23)(2x-23)'(4-x) -(2x-23)^{2}= \\ =4(2x-23)(4-x)-(2x-23)^{2}

Упростим.

4(2x-23)(4-x)-(2x-23)^{2}= (2x-23)(4(4-x)-2x+23)=\\= (2x-23)(39-6x)

Найдем периоды возрастания и убывания:

(2x-23)(39-6x)0\\ 1) \left \{ {{2x-230} \atop {39-6x0}} \right.\\ \left \{ {{x11,5} \atop {x<6,5}} \right.\\ 2) \left \{ {{2x-23<0} \atop {39-6x<0}} \right.\\ \left \{ {{x<11,5} \atop {x6,5}} \right.\\ 6,5<x<11,5

На промежутке от 6,5 до 11,5 функция возрастает, на остальном она убывает. Имеем две точки экстремума:

6,5 - точка минимума

11,5 -  точка максимума.

У нас пулучается, что функция примет свое наименьшее значение в точке минимума, то есть в точке 6,5. Подставляем в функцию:

y=(2x-23)^{2}(4-x)+5 = (2\cdot 6,5-23)^{2}(4-6,5)+5 = -245

 

График для наглядности.

 

З.Ы. Здесь небольшой подвох есть. В точке х =14, у тоже будет равен -245. Поскольку, в рассматриваемом промежутке [0; 14), точка 14 не включена, то тогда мы не берем ее в расмотрение.


Найти наименьшие значение функции с производной y=(2x-23)^2*(4-x)+5 на промежутке [ 0; 14)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра