Рассмотрим числа между числами k² и (k+1)²; Этих чисел ровно 2k;
Разобъем расстояние между этими числами на ячейки и пронумеруем их от i=1 до i=2k; Тогда дробная часть корня от i-того элемента не превосходит ; Рассматривая данные верхнее и нижнее ограничение, приходим к другой задаче: найти такое наименьшее значение k, при котором выполнено неравенство: ; Небольшим перебором выходим на число k=3; Значит искомое n лежит в промежутке [9;16];
Рассмотрим числа между числами k² и (k+1)²; Этих чисел ровно 2k;
Разобъем расстояние между этими числами на ячейки и пронумеруем их от i=1 до i=2k; Тогда дробная часть корня от i-того элемента не превосходит ; Рассматривая данные верхнее и нижнее ограничение, приходим к другой задаче: найти такое наименьшее значение k, при котором выполнено неравенство: ; Небольшим перебором выходим на число k=3; Значит искомое n лежит в промежутке [9;16];
Здесь сразу видно, что n=11