Втетраэдре dabc все ребра равны a. точки а1, в1, с1-середины ребер da, dв и dc соответственно. а) постройте сечение тетраэдра ,проходящее через точку с1 параллельно плоскости ва1с. б) найдите площадь построенного сечения.

Mara6458 Mara6458    3   27.05.2019 21:30    40

Ответы
okru24057p00ymy okru24057p00ymy  01.10.2020 13:00
Ну, Сечение ВА1С думаю не проблема намалевать.
Сечение тетраэдра ,проходящее через точку С1 параллельно плоскости ВА1С - это будет плоскость C1B1A2, A2 - середина отрезка А1D.
Площадь C1B1A2 равна четверти площади ВА1С (Подобные треугольники).
Площадь ВА1С найдем по формуле Герона (S=sqrt{p(p-a)(p-b)(p-c)}. где p — полупериметр треугольника), для этого нужно знать все стороны.
ВС известна - а, а А1В=А1С=a*sqrt(3))/2 (высота равностороннего треугольника)/
p=(a+2*a*sqrt(3)/2)/2=(a+a*sqrt(3))/2
S (C1B1A2) = S (ВА1С)/4 = (sqrt{(a+a*sqrt(3))/2*((a+a*sqrt(3))/2-a)((a+a*sqrt(3))/2-(a*sqrt(3))/2)((a+a*sqrt(3))/2-(a*sqrt(3))/2)}/4=sqrt{(a^4)/8)/4=(а^2)/4sqrt(8)=(a^2)/8sqrt(2)
Все.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра