Написать уравнение касательной к графику функци y=ln(1+x^2) в точке с абсциссой, равной 1. сделать чертёж.

гость66666 гость66666    2   30.09.2019 23:20    0

Ответы
Неко163 Неко163  02.09.2020 13:19

Уравнение касательной: y=f'(x_{0})*(x-x_{0})+f(x)

Найдём производную сложной функции по правилу (u(v))'=u(v)'*v', где v=1+x^2, u(v)=\ln{v}

y'=\ln{(1+x^2)}'=\frac{1}{1+x^2}*(1+x^2)'=\frac{2x}{1+x^2}

y'(1)=\frac{2*1}{1+1^2}=1 \\y(1)=\ln{(1+1^2)}=\ln{2}

Уравнение касательной в точке x = 1: y=x-1+\ln{2}

ответ: y=x+\ln{2}-1

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра