Геометрическая прогрессия найдите Q и N если B1 равно 2 Bn равно 1024 Sn равно 2024

Andrey1privet4 Andrey1privet4    1   02.12.2021 16:06    0

Ответы
nastyalobzova1 nastyalobzova1  15.01.2022 06:21

Для геометрической прогрессии со знаменателем Q и первым членом B₁  верно следующее: Bₙ = Qⁿ⁻¹ * B₁, откуда Qⁿ⁻¹ = Bₙ : B₁ = 1024 : 2 = 512. Итак, отмечаем: Qⁿ⁻¹ = 512. Формула для суммы первых n членов прогрессии:

Sₙ = B₁(Qⁿ - 1)/(Q - 1) = B₁(Q * Qⁿ⁻¹  – 1) / (Q – 1) = 2*(512Q - 1) / (Q - 1) = 2046 ⇒

1024Q - 2 = 2046(Q - 1) ⇒ 1024Q - 2 = 2046Q - 2046 ⇒

2046Q - 1024Q = 2046 - 2 ⇒ 1022Q = 2044 ⇒ Q = 2044 : 1022, Q = 2.

Далее Qⁿ⁻¹ = 512 ⇒ 2ⁿ⁻¹ = 512 = 2⁹ ⇒ n - 1 = 9, откуда n = N = 10,

за N заново обозначили количество членов данной прогрессии

ответ: Q = 2, N = 10

Проверка: 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 = 2046

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра