Дан равностороний треугольник со стороной 8 см из его высот построен второй треугольник а из высот второго третий и.т.д докажите что периметры треугольников образуют прогрессию и найдите периметр шестого тнреугольника

Xaby Xaby    3   04.03.2019 10:50    2

Ответы
aleksejgrunin0 aleksejgrunin0  24.05.2020 02:07

Высота равностороннего тр-ка рассчитывается по формуле h=\frac{\sqrt3}2a, где a - сторона тр-ка. Периметр первого тр-ка 3a, периметр второго тр-ка 3a\cdot\frac{\sqrt3}2, периметр третьего 3a\cdot\frac{\sqrt3}2\cdot\frac{\sqrt3}2=3a\cdot\left(\frac{\sqrt3}2\right)^2.

Получеатся, что периметр каждого последующего тр-ка равен периметру предыдущего, умноженному на постоянный множитель \frac{\sqrt3}2. Относительно периметров имеем геометрическуй прогрессию с первым членом b_1=24 и знаменателем q=\frac{\sqrt3}2.

Периметр шестрого тр-ка - это шестой член данной прогрессии, т.е.

\\b_6=b_1\cdot q^5=24\cdot\left(\frac{\sqrt3}2\right)^5=24\cdot\frac{9\sqrt3}{32}=\frac{27\sqrt3}4

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра