1. корни уравнения: 1/(x^2-3x-3) + 5/(x^2-3x+1)=2; 2. корни уравнения: (3x^2+8x-3)/(x+3)=x^2-x+2;

AngelinaGi2006 AngelinaGi2006    1   31.07.2019 21:00    1

Ответы
assija56 assija56  03.10.2020 19:02
1/(x²-3x-3) + 5/(x²-3x+1)=2
ОДЗ : (x²-3x-3)≠0 (x²-3x+1)≠0
2(3x²-9x-7)/((x²-3x-3)(x²-3x+1)) = 2
(2(3x²-9x-7) - 2(x²-3x-3)(x²-3x+1))/((x²-3x-3)(x²-3x+1)) = 0
Получим систему:
{2(3x²-9x-7) - 2(x²-3x-3)(x²-3x+1) = 0
{(x²-3x-3)(x²-3x+1) ≠ 0
1. 2(3x²-9x-7) - 2(x²-3x-3)(x²-3x+1) = 0
5x²-18x-14 = 2x⁴-12x³+14x²+12x-6
-2x⁴+12x³-8x²-30x-8=0
-2(x-4)(x+1)(x²-3x-1) = 0
Произведение = 0, если хотя бы 1 из множителей = 0
(x-4) = 0
x₁ = 4
x+1 = 0
x₂ = -1
x²-3x-1 = 0
D = 9+4 = 13
x₃ = (3+√(13))/2 ∉ ОДЗ
x₄ = (3-√(13))/2 ∉ ОДЗ
2. (x²-3x-3)(x²-3x+1) ≠ 0
x²-3x-3 ≠ 0
Отсюда корни уравнения x₃ и x₄ не подходят.
(x²-3x+1) ≠ 0
x ≠ (3-√5)/2
x ≠ (3+√5)/2
ответ: -1; 4

2. (3x²+8x-3)/(x+3)=x²-x+2
ОДЗ: (x+3) ≠ 0 ⇒ x ≠ -3
((3x²+8x-3) - (x²-2+2))/(x+3) = 0
{(3x²+8x-3) - (x²-2+2)(x+3) = 0
{(x+3) ≠ 0 Но мы это уже указали в ОДЗ, так что необязательно.
(3x²+8x-3) - (x²-2+2)(x+3) = 0
3x²+8x-3=x³+2x²-x+6
-x³+x²+9x9x=0
(x-3)(x-1)(x+3) = 0
x-3 = 0
x₁ = 3
x-1 = 0
x₂ = 1
x+3 = 0
x₃ = -3 ∉ ОДЗ
ответ: 3; 1
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра