Частное решение дифференциального уравнения:
Примечание:
преобразование Лапласа
Функция зависит от .
Прямое преобразование Лапласа (связь между оригиналами и изображениями):
По свойствам преобразования Лапласа:
Если , то
Пошаговое объяснение:
Для нахождения частного решения данного дифференциального уравнения воспользуемся методом операционного исчисления, а именно преобразованием Лапласа:
Дифференцирования оригинала:
Раскладываем дробь на простейшие:
Таким образом
Выполним обратное преобразование Лапласа:
Тогда исходная функция равна:
Частное решение дифференциального уравнения:
Примечание:
преобразование Лапласа
Функция зависит от .
Прямое преобразование Лапласа (связь между оригиналами и изображениями):
По свойствам преобразования Лапласа:
Если , то
Пошаговое объяснение:
Для нахождения частного решения данного дифференциального уравнения воспользуемся методом операционного исчисления, а именно преобразованием Лапласа:
Дифференцирования оригинала:
Раскладываем дробь на простейшие:
Таким образом
Выполним обратное преобразование Лапласа:
Тогда исходная функция равна: