Вкомнате собрались три человека. каждый из них либо рыцарь, который всегда говорит правду, либо лжец, который всегда лжёт, либо хитрец, который может и говорить правду и лгать по своему желанию. один из собравшихся сказал: «среди нас есть лжец». другой сказал: «среди любых двух из нас есть лжец». третий сказал: «все мы — лжецы». докажите, что среди собравшихся есть хитрец
2) Они не могут быть все лжецами, потому что тогда фраза третьего "Все мы - лжецы" была бы правдой, а лжец не может сказать правду.
Значит, третий по-любому соврал. Он или лжец, или хитрец.
3) Если фраза первого - ложь, то среди них нет лжецов. Тогда первый не лжец, но он солгал. Значит, он хитрец и задача решена.
Если эта фраза - правда, то среди них есть как минимум один лжец.
4) Если фраза второго - ложь, то среди них можно выделить 2 не лжецов. Тогда второй солгал, он лжец или хитрец.
Если второй лжец, то первый сказал правду. Тогда первый рыцарь, а третий хитрец, иначе получается два лжеца, а мы доказали, что среди них есть как минимум два не лжеца.
В обоих случаях среди них есть хитрец. - или второй, или третий.
5) Если фраза второго - правда, то два лжеца - это первый и третий.
Но если там есть лжец, то первый сказал правду и не может быть лжецом.
Получили противоречие, значит, второй не мог сказать правду.
6) Третий по-любому соврал, как мы уже выяснили, поэтому все варианты исчерпаны.
В итоге мы в любом случае получаем хитреца.