В прямоугольном треугольнике катеты равны 11 см и 60 см . Найдите sin острых углов этого треугольника.
2. В прямоугольном треугольнике катет и гипотенуза равны 15 см и 17 см. Найдите cos острых углов треугольника.
3. В прямоугольном равнобедренном треугольнике гипотенуза равна 24см. Найдите sin, cos, tg острого угла.

dianamironcuk40 dianamironcuk40    2   23.04.2020 14:53    5

Ответы
Мялан Мялан  25.04.2020 20:30
ответ:1) Пусть АС=24см; ВС=7см Найдем гипотенузу АВ: АВ=sqrt(7²+24²)=√625=25 Больший угол - угол напротив большего катета или угол, к которому примыкает меньший катет - ∠АВС Sin∠АВС=АС/АВ=24/25=0.96 Cos∠АВС=ВС/АВ=7/25=0.28 tg∠АВС=АС/ВС=24/7 2) Пусть АВ=25см, т. е. угол С прямой. Тогда Sin∠B=0.6=АС/АВ, значит АС=Sin∠B*АВ=0.6*25=15см ВС=sqrt(25²-15²)=20см 3) Тут ошибка в условии (катет не может быть больше гипотенузы) , предположу, что катет = 3.5√2см Пусть АС=3.5√2см, AB=7см BC=sqrt(7²-(3.5√2)²)=3.5√2см Т. е. АС=ВС, треугольник равнобедренный, ∠А=∠В=90/2=45° Если катет (АС) = 3.5√3см, то Sin∠B=АС/АВ=3.5√3/7=√3/2, ∠В=60° ∠A=90°-∠B=30°Пошаговое объяснение:
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика