В первой урне 6 белых и 6 черных шаров, во второй урне 3 белых и 5 черных шара. Из первой урны взяли 1 шар и переложили во вторую урну, после этого из второй урны взяли 1 шар. Найти вероятность, что этот шар черный

Даша29911 Даша29911    2   06.07.2020 18:07    3

Ответы
gtagiev gtagiev  15.09.2020 06:38

A — из первой урны переложили шар во вторую и затем из второй урны взяли шар и им оказался чёрный шар.

B₁ — переложен белый шар

В₂ — переложен черный шар.

Белый шар из первой урны переложим с вероятностью P(B_1)=\dfrac{6}{12}=\dfrac{1}{2}. Во второй урне будет 4 белых и 5 черных шара. Тогда вероятность извлечения чёрного шара из второй урны равна P_{B_1}(A)=\dfrac{1}{2}\cdot \dfrac{5}{9}=\dfrac{5}{18} . Аналогично, чёрный шар из первой урны достаём с вероятностью P(B_2)=\dfrac{6}{12}=\dfrac{1}{2}. Тогда вероятность извлечения чёрного шара из второй урны равна P_{B_2}(A)=\dfrac{1}{2}\cdot \dfrac{6}{9}=\dfrac{1}{3}.

Искомая вероятность: P(A)=\dfrac{5}{18}+\dfrac{1}{3}=\dfrac{11}{18}

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика