Шестнадцать одинаковых снежинок нужно расклеить по четырём стенам комнаты так, чтобы на каждой стене была хотя бы одна снежинка, на всех стенах было разное число снежинок и суммы количеств снежинок на противоположных стенах были равны. сколько существует различных вариантов выполнения этого , если различные варианты отличаются числом снежинок хотя бы на одной стене?
Один из вариантов решения задачи:
16 снежинок , нужно разложить на 4 стены: например так: 5-2-3-6; или так: 7-6-1-2, при таком "раскладе" сумма колич. снежинок на противоположных сторонах равна восьми. Колличество вариантов можно посчитать, разложив число 8 на всевозможные слагаемые, т.е.: 1+7(каждое из этих слагаемых и является колличеством снежинок на каждой из противоположных стен); 2+6; 3+5. Из этого следует, что возможно,например, 3 варианта выполнения этого задания. (3-1-5-7); (5-2-3-6); (7-6-1-2).
PS: но может и больше.
_5_
6 I___I 2
3
5263,5236,5362,5326,5623,5632
2356,2365,2563,2536,2653,2635
6вариантов*4цифры=24