sin²x + cos²x = 1
Исходя из этого:
1) 2sinx + sin²x + cos²x = 1
2sinx + 1 = 1
2sinx = 0
sinx = 0
x = arcsin0 = πn, (n€Z)
2) sin²x - 2 = sinx - cos²x
sin²x + cos²x - 2 = sinx
1 - 2 = sinx
sinx = -1
x = arcsin(-1) = 3π/2 ± 2πn, (n€Z)
3) 2cos²x - 1 = cosx - 2sin²x
2(sin²x + cos²x) - 1 = cosx
2•1 - 1 = cosx
cosx = 1
x = arccos1 = 2πn, (n€Z)
4) 3 - cosx = 3cos²x + 3sin²x
3 - cosx = 3(sin²x + cos²x)
3 - cosx = 3•1
cosx = 0
x = arccos0 = π/2 ± πn, (n€Z)
sin²x + cos²x = 1
Исходя из этого:
1) 2sinx + sin²x + cos²x = 1
2sinx + 1 = 1
2sinx = 0
sinx = 0
x = arcsin0 = πn, (n€Z)
2) sin²x - 2 = sinx - cos²x
sin²x + cos²x - 2 = sinx
1 - 2 = sinx
sinx = -1
x = arcsin(-1) = 3π/2 ± 2πn, (n€Z)
3) 2cos²x - 1 = cosx - 2sin²x
2(sin²x + cos²x) - 1 = cosx
2•1 - 1 = cosx
cosx = 1
x = arccos1 = 2πn, (n€Z)
4) 3 - cosx = 3cos²x + 3sin²x
3 - cosx = 3(sin²x + cos²x)
3 - cosx = 3•1
cosx = 0
x = arccos0 = π/2 ± πn, (n€Z)