Це́лые чи́сла — расширение множества натуральных чисел[1], получаемое добавлением к нему нуля и отрицательных чисел[2]. Необходимость рассмотрения целых чисел продиктована невозможностью в общем случае вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего. Введение нуля и отрицательных чисел делает вычитание такой же полноценной операцией, как сложение
Развитие математики началось с навыков практического счёта (один, два, три, четыре…), поэтому натуральные числа возникли ещё в доисторический период как идеализация конечного множества однородных, устойчивых и неделимых предметов (людей, овец, дней и т. п.). Сложение появилось как математическая модель таких важных событий, как объединение нескольких множеств (стад, мешков и т. д.) в одно, а вычитание отражало, наоборот, отделение части множества. Умножение для натуральных чисел появилось в качестве, так сказать, пакетного сложения: 3 × 4 означало сумму «3 раза по 4», то есть 4 + 4 + 4. Свойства и взаимосвязь операций открывались постепенно[
Розвиток математики почалося з навичок практичної лічби (один, два, три, чотири…), тому натуральні числа виникли ще в доісторичний період як ідеалізація скінченної [множини однорідних, стійких і неподільних об'єктів (людей, овець, днів тощо). Додавання з'явилося як математична модель таких важливих подій, як об'єднання кількох множин (стад, мішків тощо) в одне, а віднімання відображало, навпаки, відокремлення частини множини. Множення для натуральних чисел з'явилося в якості, так би мовити, пакетного додавання: 3 × 4 означало суму «3 рази по 4», тобто 4 + 4 + 4. Властивості і взаємозв'язок операцій відкривалися поступово[2][3].
Це́лые чи́сла — расширение множества натуральных чисел[1], получаемое добавлением к нему нуля и отрицательных чисел[2]. Необходимость рассмотрения целых чисел продиктована невозможностью в общем случае вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего. Введение нуля и отрицательных чисел делает вычитание такой же полноценной операцией, как сложение
Развитие математики началось с навыков практического счёта (один, два, три, четыре…), поэтому натуральные числа возникли ещё в доисторический период как идеализация конечного множества однородных, устойчивых и неделимых предметов (людей, овец, дней и т. п.). Сложение появилось как математическая модель таких важных событий, как объединение нескольких множеств (стад, мешков и т. д.) в одно, а вычитание отражало, наоборот, отделение части множества. Умножение для натуральных чисел появилось в качестве, так сказать, пакетного сложения: 3 × 4 означало сумму «3 раза по 4», то есть 4 + 4 + 4. Свойства и взаимосвязь операций открывались постепенно[
Розвиток математики почалося з навичок практичної лічби (один, два, три, чотири…), тому натуральні числа виникли ще в доісторичний період як ідеалізація скінченної [множини однорідних, стійких і неподільних об'єктів (людей, овець, днів тощо). Додавання з'явилося як математична модель таких важливих подій, як об'єднання кількох множин (стад, мішків тощо) в одне, а віднімання відображало, навпаки, відокремлення частини множини. Множення для натуральних чисел з'явилося в якості, так би мовити, пакетного додавання: 3 × 4 означало суму «3 рази по 4», тобто 4 + 4 + 4. Властивості і взаємозв'язок операцій відкривалися поступово[2][3].