По окружности красным карандашом записали 49 различных натуральных чисел, меньших 100. между каждыми двумя соседними красными числами записали синим их наибольший общий делитель. могло ли случиться, что все синие числа различны?

рута2 рута2    3   13.09.2019 07:40    2

Ответы
Миша112236677777777 Миша112236677777777  07.10.2020 11:22
Не могло.

Заметим, что для двух неравных натуральных чисел n < m наибольший общий делитель не превышает [m/2], где квадратные скобки означают округление вниз до ближайщего целого. Тогда среди всех чисел, меньших 100, наибольшие общие делители могут принимать значения от 1 до 49 — всего 49 вариантов. Так как синих чисел как раз 49, то каждое число от 1 до 49 написано по разу.

Простые числа 41, 43 и 47 должны быть написаны синим. Существует только один получить такие числа: надо написать рядом красные 41 и 82, 43 и 86, 47 и 94. Поскольку все остальные числа взаимно просты с 41, 43 и 47, то радом с красными 41, 43 и 47 будут написаны по синей единице, и синих единиц будет не меньше двух.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика