1) f(x) = 3(x² +1)⁵ - 4ln(2x³ +1) + ln(x²)
f'(x) = 15(x² +1)⁴ * (x² +1)' - 4*1/(2x³ +1) * (2x³ +1)' + 1/x² * (x²)' =
= 15(x²+1)⁴ *2x -4*1/(2x³ +1) * 6x + 1/x² * (2x) = 30x/(х² +1)⁴ - 24х|(2х³ +1) +2/х
2) f(x) = -Cos3x + tgx² - ln(x -1).
f'(x) = -3Sin3x + 1/Cos²x² * (x²)' - 1/(x-1) = -3Sin3x + 2x/Cos²x² - 1/(x-1).
3) f(x) = 1/4(x⁵ -3) + √(x+1) -10.
f'(x) = 5x⁴/4 + 1/(2√(x+1))
1) f(x) = 3(x² +1)⁵ - 4ln(2x³ +1) + ln(x²)
f'(x) = 15(x² +1)⁴ * (x² +1)' - 4*1/(2x³ +1) * (2x³ +1)' + 1/x² * (x²)' =
= 15(x²+1)⁴ *2x -4*1/(2x³ +1) * 6x + 1/x² * (2x) = 30x/(х² +1)⁴ - 24х|(2х³ +1) +2/х
2) f(x) = -Cos3x + tgx² - ln(x -1).
f'(x) = -3Sin3x + 1/Cos²x² * (x²)' - 1/(x-1) = -3Sin3x + 2x/Cos²x² - 1/(x-1).
3) f(x) = 1/4(x⁵ -3) + √(x+1) -10.
f'(x) = 5x⁴/4 + 1/(2√(x+1))