Найти высоту пирамиды, в основе которой лежит равнобедренный треугольник с основой 6 см и высотой 9 см, если каждое боковое ребро пирамиды равно 13 см

LOlka228322 LOlka228322    3   12.07.2019 00:00    0

Ответы
HellyBellyGaz HellyBellyGaz  03.10.2020 01:35
В основании - равнобедренный треугольник с основанием 6 и высотой 9, боковая сторона равна √90.Его площадь равна 6*9/2 = 27.Радиус описанной вокруг него окружности равен произведению всех сторон, деленному на четыре площади: 6*90/(4*27) = 5.Так как боковое ребро равно 13 см, то высота пирамиды равна √13^2 - 5^2 = 12ответ: 12 см.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика