Найти a u b, a ∩ b, a\b, b\a 1)a={x: -3 2)a={3-(n+1)} b={n+1} n€n

ТвОйМаЛьЧиК ТвОйМаЛьЧиК    3   07.09.2019 15:10    1

Ответы
Svetik200611 Svetik200611  09.09.2020 21:29

Определить множества A U B, A ∩ B, A\B, B\A, A Δ B, если:
              а) A = {x: 0 < x < 2}, B = {x: 1 ≤ x ≤ 3};
              б) A = {x: x2 - 3x < 0}, B = {x: x2 - 4x + 3 ≥ 0};
              в) A = {x: |x - 1| < 2}, B = {x: |x - 1| + |x - 2| < 3}.


Решение.

Пользуясь определениями объединения, пересечения, разности и симметрической разности множеств, находим:

а) 
              

б) Поскольку x2 - 3x < 0 для 0 < x < 3, то A = {x: 0 < x < 3}. Неравенство x2 - 4x + 3 ≥ 0 справедливо для -∞ < x ≤ 1 и 3 ≤ x < +∞. Обозначим D = {x: -∞ < x ≤ 1}, E = {x: 3 ≤ x < +∞}, тогда B = D U E. Используя свойства операций над множествами, находим:


          
          
          
          

в) Запишем явное выражение для множества

A = {x: -2 < x - 1 < 2} = {x: -1 < x < 3}.

Затем, решая неравенство |x - 1| + |x - 2| < 3, находим явное выражение для множества B = {x: 0 < x < 3}. Тогда


          
          
          
          

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика