Найдите длину стороны правильного шестиугольника вписанного в окружеость x в квадрате + y в квадрате = rв квадрате если точка a(3; 4) является одной из его вершин
Все вершины многоугольника лежат на окружности, что значит что точка A принадлежит графику окружности. Поддставим ее координаты в уравнение. 9+16=R^2=25 => R=5 Из геометрии известно что сторона правильного шестиугольника вписанного в окружность радиусом R равна как раз R(доказывается легко, проведите два радиуса к соседним вершинам шестиугольника из центра окружности, получится правильный треугольник). ответ: 5
9+16=R^2=25 => R=5
Из геометрии известно что сторона правильного шестиугольника вписанного в окружность радиусом R равна как раз R(доказывается легко, проведите два радиуса к соседним вершинам шестиугольника из центра окружности, получится правильный треугольник).
ответ: 5