ответ: 3 корня.
cos(x-π)-cos²4x = sin²4x- sin(x/2+3π/2);
-cosx-cos²4x-sin²4x+sin(x/2+3π/2)=0;
-cosx-1-cos(x/2)=0;
-2cos²x/2-cosx/2=0;
-cosx/2*(2cosx/2+1)=0;
1) cosx/2=0⇒x/2=π/2+πn; n∈Z; x=π+2πn; n∈Z;
2)cosx/2=-1/2; x/2=±2/3π+2πn; n∈Z; x=±4π/3+4πn; n∈Z;
Найдем корни, принадлежащие [-π;4π/3]
1) x=π+2πn; n∈Z; -π≤π+2πn≤4π/3;-1≤1+2n≤4/3;-2≤2n≤1/3;-1≤n≤1/6;
n=-1; x=π-2π=-π; n=0; x= π
2) x=±4π/3+4πn; n∈Z; а) x=4π/3+4πn; n∈Z;
-π≤4π/3+4πn≤4π/3; -1≤4/3+4n≤4/3; n∈Z; -7/3≤4n≤0; -7/12≤n≤0; n=0; х=4π/3;
б) x=-4π/3+4πn; n∈Z;
-π≤-4π/3+4πn≤4π/3; -1≤-4/3+4n ≤4/3; n∈Z; 1/3≤4n≤8/3; 1/12≤n≤2/3;нет корней.
Всего ТРИ корня.
ответ: 3 корня.
cos(x-π)-cos²4x = sin²4x- sin(x/2+3π/2);
-cosx-cos²4x-sin²4x+sin(x/2+3π/2)=0;
-cosx-1-cos(x/2)=0;
-2cos²x/2-cosx/2=0;
-cosx/2*(2cosx/2+1)=0;
1) cosx/2=0⇒x/2=π/2+πn; n∈Z; x=π+2πn; n∈Z;
2)cosx/2=-1/2; x/2=±2/3π+2πn; n∈Z; x=±4π/3+4πn; n∈Z;
Найдем корни, принадлежащие [-π;4π/3]
1) x=π+2πn; n∈Z; -π≤π+2πn≤4π/3;-1≤1+2n≤4/3;-2≤2n≤1/3;-1≤n≤1/6;
n=-1; x=π-2π=-π; n=0; x= π
2) x=±4π/3+4πn; n∈Z; а) x=4π/3+4πn; n∈Z;
-π≤4π/3+4πn≤4π/3; -1≤4/3+4n≤4/3; n∈Z; -7/3≤4n≤0; -7/12≤n≤0; n=0; х=4π/3;
б) x=-4π/3+4πn; n∈Z;
-π≤-4π/3+4πn≤4π/3; -1≤-4/3+4n ≤4/3; n∈Z; 1/3≤4n≤8/3; 1/12≤n≤2/3;нет корней.
Всего ТРИ корня.