На рисунке изображён график функции вида y = ax^2+bx+c, где числа a, b и с - целые. Найдите у(-19).


На рисунке изображён график функции вида y = ax^2+bx+c, где числа a, b и с - целые. Найдите у(-19).

аля668 аля668    1   09.01.2022 21:41    8

Ответы
Равб Равб  16.02.2022 15:06

Данная функция является квадратичной, и ее график — это парабола.

Сперва нужно определить коэффициенты а, b и c в формуле функции.

Формула абсциссы вершины параболы:

x =\frac{-b}{2a}

По графику видим, что абсцисса вершины равна 4.  

Значит, \frac{-b}{2a}=4.

Выберем две точки с целочисленными координатами, принадлежащие параболе.

Возьмем вершину, т. А (4; 1) и т. В (2; -3).

Подставим координаты точек в формулу функции: абсциссу вместо х, а ординату вместо у.

Получаем два уравнения:

1) a\cdot4^2+b\cdot 4 + c = 1

16a+4b + c = 1

2) a\cdot2^2+b\cdot 2 + c = -3

4a+2b + c = -3

Составим систему уравнений:

\begin{equation*} \begin{cases} \frac{-b}{2a}=4, \\ 16a+4b + c = 1, \\ 4a+2b + c = -3. \end{cases}\end{equation*}

Из первого уравнения выразим коэффициент b.

Сперва умножим обе части уравнения на знаменатель дроби:

\frac{-b}{2a}=4 \ \ \ |\cdot 2a

-b = 8a

Теперь умножим обе части на -1:

-b = 8a\ \ \ |\cdot -1

b = -8a

Из второго уравнения вычтем третье, чтобы избавиться от коэффициента c. Отдельно вычитаем левые, отдельно правые части:

(16a+4b+c)-(4a+2b+c)=1-(-3)

Раскроем скобки:

16a+4b+c-4a-2b-c=1+3

Приведем подобные слагаемые:

12a+2b=4

Разделим обе части уравнения на 2 для удобства:

6a+b=2

Подставим значение коэффициента b:

6a+(-8a)=2

6a-8a=2

-2a=2

a = 2 : (-2)

a = -1

Теперь найдем коэффициент b, подставив найденное значение коэффициента а в уравнение b = -8a:

b = -8 \cdot(-1) = 8

Подставим значения коэффициентов а и b в третье уравнение системы, чтобы найти коэффициент с:

4\cdot (-1)+2\cdot 8 + c = -3

-4 + 16 + c = -3

c = -3 + 4 - 16

c = -15

Подставим найденные коэффициенты в формулу функции:

у = -х² + 8х - 15

Чтобы найти у(-19), подставим число -19 вместо аргумента:

y(-19) = - (-19)^2+8\cdot (-19) - 15 =-361-152-15=-528

ответ: -528.


На рисунке изображён график функции вида y = ax^2+bx+c, где числа a, b и с - целые. Найдите у(-19).
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика