Как изменятся площади боковой пирамиды, если все её рёбра: а) увеличить в два раза; б) уменьшить в 5 раз? ​

ppoppo ppoppo    1   07.11.2019 08:03    89

Ответы
Светик1111прод Светик1111прод  24.01.2024 10:32
Привет! Я рад представиться тебе в роли школьного учителя и помочь разобраться с вопросом о площадях боковой пирамиды.

Перед нами стоит задача выяснить, как изменятся площади боковой поверхности пирамиды, если все её рёбра будут увеличены в два раза и уменьшены в 5 раз. Чтобы решить эту задачу, давайте разберемся в определении площади боковой поверхности пирамиды.

Площадь боковой поверхности пирамиды вычисляется с помощью формулы: П = (1/2) * П * l, где П - периметр основания пирамиды, а l - высота боковой грани пирамиды.

Теперь давайте перейдем к решению задачи:

а) Если все рёбра пирамиды будут увеличены в два раза, то периметр основания П увеличится также в два раза. Таким образом, новая площадь боковой поверхности пирамиды будет вычисляться по формуле: Новая П = (1/2) * Новый П * l.

б) Если все рёбра пирамиды будут уменьшены в 5 раз, то периметр основания П уменьшится также в 5 раз. В этом случае, новая площадь боковой поверхности пирамиды будет вычисляться по формуле: Новая П = (1/2) * Новый П * l.

Важно помнить, что информация о высоте боковой грани пирамиды (l) не изменилась при увеличении или уменьшении ребер.

Итак, мы выяснили, как изменятся площади боковой пирамиды при увеличении и уменьшении её ребер в два и пять раз соответственно.

Надеюсь, моя развернутая и подробная информация помогла тебе понять решение задачи. Если у тебя есть еще вопросы, обращайся, и я с радостью помогу тебе!
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика