Найдём прямую параллельную заданной. Так как прямая и парабола касаются, а смещение прямой относительно оси ОХ зависит от коэффициента b в уравнении прямой y=kx+b, то можем записать 2x²-3x+5=3x+b 2x²-3x+5-3x-b=0 1) 2x²-6x+(5-b)=0 Точка касания имеет одну координату х, значит дискриминант должен быть равен 0 D=(-6)²-4*2*(5-b)=36-40+8b=-4+8b=0 -4+8b=0 8b=4 b=4/8=1/2 Уравнение прямой будет иметь вид: y=3x+1/2 А координату х находим из уравнения 1), учитывая что D=0 x=6/2*2=3/2 Тогда у=3*3/2+1/2=9/2+1/2=10/2=5
Координаты точки касания (3\2;5)
P.S. Находить уравнение касательной к параболе было необязательно.
2x²-3x+5=3x+b
2x²-3x+5-3x-b=0
1) 2x²-6x+(5-b)=0
Точка касания имеет одну координату х, значит дискриминант должен быть равен 0
D=(-6)²-4*2*(5-b)=36-40+8b=-4+8b=0
-4+8b=0
8b=4
b=4/8=1/2
Уравнение прямой будет иметь вид:
y=3x+1/2
А координату х находим из уравнения 1), учитывая что D=0
x=6/2*2=3/2
Тогда у=3*3/2+1/2=9/2+1/2=10/2=5
Координаты точки касания (3\2;5)
P.S. Находить уравнение касательной к параболе было необязательно.