Из точки вне круга проведена касательная, длиной 12, и наибольшая секущая длиной 24. найдите кратчайшее расстояние от этой точки до точек окружности этого круга.

кккосомомкамилла327 кккосомомкамилла327    3   25.05.2019 05:40    3

Ответы
спеш спеш  21.06.2020 05:54
АВ- касательная АС- наибольшая секущая(проходит через центр окружности) Из треуг. АОВ: АО^2=AB^2+AC^2  или: (24-R)^2=12^2+R^2 R=9 AX=24-2R=24-18=6
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика