Исследовать данную функцию дифференциального исчисления и построить график. у=(5-х^2)/(x^2+5) исследование функции рекомендуется проверить по следующей схеме: 1) найти область определения функции; 2) исследовать функцию на непрерывность; 3) определить, является ли данная функция четной, нечетной; 4) найти интервал возрастания и убывания функции и точки экстремума; 5) найти интервалы выпуклости и вогнутости графика функции и точки перегиба; 6) найти асимптоты графика функции.
1. Область определения
Область значений E(y)=(-1;1]
2) Так как x^2+5>0 для любого действительного х (знаменатель не равен 0 для любого х), то согласно арифмитическим действиям над непрерывными функциями и непрерывности многочленов данная функция непрерывная
3) Так как область определения симметричная относительно т. х=0, и
то функция четная
Так как данная функция дробно-рациональная, то она непериодична
4)
y'>0 при x<0
y'<0 при x>0
x=0 - точка локального максимума
при х є функция возростает
при х є функция убывает
5)
- точки перегиба
функция вогнута
на интервале
функция выпукла
6) так как x^2+5>0 , то вертикальных асимптот нет
значит есть только горизонтальная асимптота y=-1