Используя графический метод решения, определите, имеет ли уравнение корни. если корни существуют, то найдите их точное или приблизительное значение. a)x²=6-x b)x²-x+4=0 c)x²-4x+4=0 d)x²-2x-6=0
Все решается через дискриминант просто и легко один пример разберу остальные делай сам x2-x-6=0 это выглядит как ( ах2-bx-c)= 0 у нас a=1 b= (-1) c=(-6) d ( дискриминант)= b2-4ac( для нашего уравнения) = (-1)2-4*1*(-6)=1+24=25 теперь переходим в нахождению корней т.е х1 и х2 их два корня так как дискриминант больше нуля, если бы равен нулю 1 и меньше нуля тогда бы корней не было, переходим к вычислению общая формула выгледит как x(1,)=(-b+корень квадратный из дискриминанта(d))/2а для 2 x(2,)=(-b-корень квадратный из дискриминанта(d))/2а получаем для нас x(1)=(-1+5)/2=2 х(2)=(-1-5)/2=(-6)/2=-3
x2-x-6=0 это выглядит как ( ах2-bx-c)= 0 у нас a=1 b= (-1) c=(-6)
d ( дискриминант)= b2-4ac( для нашего уравнения) = (-1)2-4*1*(-6)=1+24=25
теперь переходим в нахождению корней т.е х1 и х2 их два корня так как дискриминант больше нуля, если бы равен нулю 1 и меньше нуля тогда бы корней не было, переходим к вычислению общая формула выгледит как x(1,)=(-b+корень квадратный из дискриминанта(d))/2а для 2 x(2,)=(-b-корень квадратный из дискриминанта(d))/2а получаем для нас x(1)=(-1+5)/2=2 х(2)=(-1-5)/2=(-6)/2=-3