Игральную кость бросают дважды. найдите вероятность того, что наименьшее из двух выпавших чисел равно 2.

KiryaRossokha KiryaRossokha    1   13.08.2019 02:10    2

Ответы
erkin0268 erkin0268  09.08.2020 10:21
Ре­ше­ние. При бро­са­нии ку­би­ка два­жды рав­но­воз­мож­ны 6 · 6 = 36 раз­лич­ных ис­хо­дов. Число 2 будет наи­мень­шим из вы­пав­ших, если хотя бы один раз вы­па­да­ет 2 и ни разу — 1. То есть либо на пер­вом ку­би­ке долж­но вы­пасть 2 очка, а на вто­ром — любое число кроме 1, либо на­о­бо­рот, на вто­ром ку­би­ке долж­но вы­пасть 2, а на пер­вом — любое число кроме 1. Также не­об­хо­ди­мо пом­нить, что при таком подсчёте ва­ри­ант, когда на обоих ку­би­ках вы­па­да­ет двой­ка, мы учи­ты­ва­ем два­жды: 5 + 5 − 1 = 9. По­это­му ве­ро­ят­ность того, что наи­мень­шее из двух вы­пав­ших чисел — 2 равна 9:36=0,25
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика