Dх/(4sinx-6cosx) решить интеграл универсальная подстановка

Kamilla1351 Kamilla1351    2   31.07.2019 06:20    0

Ответы
kukusiki12345 kukusiki12345  03.10.2020 18:19
Почему бы тебе не залезть в ггугл и не посмотреть как это делается? Ты же знаешь какой метод нужно использовать.
Все стандартно.
t=tg \frac{x}{2} =\ \textgreater \ x=2arctgt =\ \textgreater \ dx=\frac{2dt}{1+t^2} \\ sinx= \frac{2t}{1+t^2} ; cosx= \frac{1-t^2}{1+t^2} \\ \int\limits \frac{2dt}{2(3t^2+4t-3)} \, = -\frac{1}{\sqrt{3}} \int\limits \frac{d(\sqrt{3}t+ \frac{2}{\sqrt{3}})}{ (\frac{ \sqrt{13} }{\sqrt{3}})^2-(\sqrt{3}t+ \frac{2}{\sqrt{3}})^2 } \, =...
А вот теперь лезешь в таблицу и расписываешь "высокий" логарифм. Мне этим заниматься не очень хочется.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика