Четырехзначное наз восхитительным, если оно делится на 25, его сумма цифр делится на 25, и его произведение цифр длится на 25. найдите все восхитительные числа

laura103 laura103    1   13.10.2019 22:54    3

Ответы
viktpriabihanov viktpriabihanov  11.09.2020 10:29

Пошаговое объяснение:

Давайте думать и рассуждать ("разжевывать", чтоб было понятно).

1) Пусть есть число вида  abcd.  Причем числа a,b,c,d  могут принимать значения от 0 до 9  кроме   а (оно не может быть 0)

значит, любое число abcd можно представить как ab00+cd

Понятно, что число ab00 по-любому делится на 25. Значит , надо, чтобы cd делилось на 25.  А это будут  00,   25 , 50  и 75

Т.е. мы пришли к тому, что надо искать среди чисел вида

   ab00,  ab25, ab50, ab75

2) сумма цифр делится на 25. Т.к. все цифры не могут быть больше 9, то сумма цифр однозначно не может быть больше 4*9=36, а значит, чтоб делилась на 25 необходимо , чтобы сумма была равна 25. Т.е.

 a+b+0+0=25       a+b=25   такого быть не может

  a+b+2+5=25      a+b=18     такое только при a=b=9, число 9925

  a+b+5+0=25     a+b=20   тоже не подходит

  a+b+7+5=25      a+b=13     это при   a=4    b=9          4975

                                                           a=5   b=8           5875

                                                           a=6    b=7         6775

                                                           a=7     b=6          7675

                                                           a=8     b=5         8575

                                                            a=9    b=4         9475

3) а теперь из этих 7 чисел найдем такие, у которых произведение делится на 25.

   можно просто перемножить и поделить, но опять же порассуждаем. Число делится на 5 тогда, когда при его разложении на множители имеем две пятерки (нули у нас отсеклись еще раньше). Т.е. сразу подходит 9925, 5875 и 8575. Все.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика