Логическая функция F задаётся выражением (¬x ≡ z) → (y ≡ (w ∨ x)). Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.
Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w. Объясните подробно решение Не надо просто ответ


Логическая функция F задаётся выражением (¬x ≡ z) → (y ≡ (w ∨ x)). Дан частично заполненный фрагм

Аркадий111111122222 Аркадий111111122222    3   23.07.2020 17:15    17

Ответы
alesqwer alesqwer  24.08.2020 23:55

yxwz

Объяснение:

Чтобы значение функции (¬x ≡ z) → (y ≡ (w ∨ x)) было ложным, выражение ¬x ≡ z должно быть истинным, а выражение y ≡ (w ∨ x) – ложным. Чтобы первое выражение было истинным, переменные x и z должны иметь противоположные значения: 0 и 1 или 1 и 0.

Рассмотрим третью строку таблицы. Три переменных равны нулю, F = 0. Значит, оставшаяся переменная (переменная 2 в таблице) равна 1, и это z или x. Тогда y = 0, w = 0, и чтобы выражение y ≡ (w ∨ x) было ложным, необходимо, чтобы x = 1. Значит, второй столбец – x. Другой подходящей комбинации с тремя нулями быть не может, значит, в пустых клетках в первой и второй строках таблицы должны стоять единицы.

Поскольку x и z должны иметь разные значения, а x – это переменная 2, из первой и второй строк таблицы видим, что z – переменная 4.

Рассмотрим вторую строку. В ней x = 1, тогда w ∨ x= 1 независимо от значения w, и чтобы выражение y ≡ (w ∨ x) было ложным, необходимо, чтобы y = 0. Получается, что y – переменная 1, w – переменная 3.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Информатика