Высота правильной треугольной пирамиды равна 4 корней 3,радиус окружности описанной около её основания равен 8. Найти апофему, площадь боковой поверхности, площадь полной поверхности. ​

лиза2630 лиза2630    3   14.05.2020 00:20    979

Ответы
Alice547 Alice547  14.05.2020 00:30

Объяснение:

Дана правильная треугольная пирамида. Её высота Н равна a√3, радиус окружности, описанной около её основания, равен 2a.

Найти: а) апофему А пирамиды.

Радиус R окружности, описанной около её основания, равен 2/3 высоты основания, то есть R = в√3/3, где в - сторона основания.

Находим сторону основания: в = R/(√3/3) = R√3 = 2a√3.

Отсюда апофема равна: А = √(Н² + (R/2)²) = √(3a² + a²) = √4a² = 2a.

Величина R/2 равна 1/3 высоты основания или радиусу вписанной окружности в основание.

б) угол α между боковой гранью и основанием равен:

α = arc tg(H/(R/2)) = arc tg(a√3/a) = arc tg√3 = 60 градусов.

в) площадь Sбок боковой поверхности.

Периметр основания Р = 3в = 3*2a√3 = 6a√3.

Sбок = (1/2)РА = (1/2)*(6a√3)*2а = 6a²√3 кв.ед.

г) плоский угол γ при вершине пирамиды(угол боковой грани).

γ = 2arc tg((в/2)/А) = 2arc tg((2а√3/2)/2а) = 2arc tg(√3/2) ≈ 1,42745 радиан или 81,7868 градуса.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия