.(Высота конуса разделена на четыре равных части. через точки деления проведены плоскости, параллельные основанию. найти площади получившихся сечений, если радиус основания конуса r).

Лейля16 Лейля16    3   26.02.2019 13:40    5

Ответы
egorshlyahov12p0dhm9 egorshlyahov12p0dhm9  23.05.2020 14:47
Пусть АВС - осевое сечение конуса. В - вершина конуса. ВО - высотк конуса. К,М,Т - точки деления начиная сверху. К1, М1, Т1 -соответствующие точки на стороне ВС. Тр-к ОВС подобен тр-ку ТВТ1 по двум углам. так как КТ = 3/4 * ВО, то ТТ1 = 3/4 * R тогда площадь этого сечения равна S = пи* (3/4 * R)^2 = 9/16 *пиR^2; Аналогично ММ1=0,5R, тогда площадь этого сечения равна S = пи* (0,5 * R)^2 = 0,25 *пиR^2; и КК1=1/4*R, тогда площадь этого сечения равна S = пи* (1/4 * R)^2 = 1/16 *пиR^2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия