Вычислите площадь боковой поверхности правильной треугольной пирамиды, если ее высота равна 9 см, а апофема 18 см.

Миша3456 Миша3456    1   28.02.2019 09:00    18

Ответы
nnika1015 nnika1015  23.05.2020 16:47

SABC - прав.треуг. пирамида. SO - ее высота, SK- апофема. Отезок ОК - равен 1/3 ВК (ВК-высота равностороннего тр-ка АВС).

Из прям. тр-ка SOK: ОК = кор(SKкв - SOкв) = кор(324-81) = кор243 = 9кор3.

Тогда ВК = 27кор3.  Теперь найдем сторону а тр. АВС из условия, что аsin60 = BK.

а = 2ВК/кор3 = 54.  Тогда Sбок = 3*[(1/2)*AC*SK] = 3*27*18  = 1458 cм^2/

 

ответ: 1458 см^2.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия