Ввыпуклом четырехугольнике abcd ad=2bc, ac = cd, o - середина ac, угол obc = углу ocb.! а. ) докажите что bc || ad б. ) найдите отношение площадей треугольника boc и выпуклого пятиугольника aobcd

kristinamirnaya kristinamirnaya    2   21.08.2019 14:10    11

Ответы
helissieble helissieble  05.10.2020 09:25

В условии опечатка: в пункте б) надо найти отношение площадей треугольника ВОС и НЕвыпуклого пятиугольника AOBCD.

а) ∠ОВС = ∠ОСВ по условию, значит ΔОВС равнобедренный с основанием ВС, ОВ = ОС.

АС = CD по условию, значит ΔACD равнобедренный с основанием AD, ∠CAD = ∠CDA.

О - середина АС, значит

ОВ = ОС = ОА.

Итак, AD = 2BC (по условию), AC = 2OC и  CD = 2OB, тогда

ΔADC подобен ΔСОВ по трем пропорциональным сторонам. Значит

∠ВСО = ∠DAC, а эти углы накрест лежащие при пересечении прямых AD и ВС секущей АС, значит BC║AD.

б) Коэффициент подобия треугольников ВОС и DAC:

k = 1/2

Площади подобных треугольников относятся как квадрат коэффициента подобия:

Sboc : Sdac = k² = 1/4

Т.е. Sdac = 4Sboc, тогда площадь пятиугольника AOBCD:

Saobcd = Sboc + Sdac = 5Sboc,

Sboc : Saobcd = 1 : 5

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия