Центр описанной около треугольника окружности лежит в точке пересечения срединных перпендикуляров. Для равностороннего треугольника это точка пересечения высот, медиан, биссектрис, т.к. они у него совпадают. Медианы треугольника пересекаются в отношении 2:1, считая от вершины. Следовательно, радиус описанной около равностороннего треугольника окружности равен 2/3 его высоты. R=12:3•2=8 дм.
Если дана сторона правильного треугольника, то существует формула радиуса описанной около него окружности. R=a/√3
Для равностороннего треугольника это точка пересечения высот, медиан, биссектрис, т.к. они у него совпадают.
Медианы треугольника пересекаются в отношении 2:1, считая от вершины. Следовательно, радиус описанной около равностороннего треугольника окружности равен 2/3 его высоты.
R=12:3•2=8 дм.
Если дана сторона правильного треугольника, то существует формула радиуса описанной около него окружности. R=a/√3